«УТВЕРЖДАЮ»
Заместитель председателя приемной комиссии, проректор по УМР и МП
_______ А.С. Борзова ______ 2025 г.

<u>РЕГЛАМЕНТ</u> проведения собеседования по <u>МАТЕМАТИКЕ</u>

Собеседование по математике представляет собой форму вступительного испытания по математике для поступающих в Московский государственный технический университет гражданской авиации (МГТУ ГА) в соответствии с особенностями, установленными подпунктом 10) пункта 16.6 Правил приема в МГТУ ГА на обучение по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры на 2025/26 учебный год.

Поступающие в МГТУ ГА (г. Москва) и Ростовский филиал МГТУ ГА (г. Ростов-на-Дону) проходят собеседование в Москве. Поступающие в Иркутский филиал МГТУ ГА – в Иркутске.

Собеседование по выбору поступающего проводится в очной форме или в дистанционном формате в день, предусмотренный расписанием вступительных испытаний по общеобразовательным предметам, в 11 часов по местному времени.

При выборе поступающим очной формы проведения собеседования оно проводится по адресам:

- для поступающих в МГТУ ГА (г. Москва) и Ростовский филиал МГТУ ГА (г. Ростов-на-Дону): г. Москва, Кронштадтский бульвар, дом 20;
- для поступающих в Иркутский филиал МГТУ ГА (г. Иркутск): г. Иркутск, ул. Советская, дом 139.

Если поступающий подал заявления о приеме на обучение в Иркутский филиал Университета и, кроме того, в Москву и (или) Ростовский филиал Университета, он может проходить собеседование либо в Москве, либо в Иркутске. Показанные результаты собеседования при этом будут учитываться везде, куда поступающий подавал заявления о приеме.

Содержание собеседования составлено коллективом кафедры высшей математики (ВМ) МГТУ ГА в соответствии с программой вступительных испытаний по математике и Федеральным компонентом государственных стандартов основного общего и среднего (полного) общего образования по мате-

матике (приказ Минобразования России от 05.03.2004 г. № 1089).

Собеседование состоит из двух вопросов и двух задач. Максимальный балл за собеседование равен 100. Критерии оценивания результатов собеседования содержатся в приложении 2.

ΠΡΟΓΡΑΜΜΑ

вступительного собеседования по математике

Вступительное собеседование с поступающими проводится членами экзаменационной комиссии по математике на основании руководящих и нормативных документов Министерства науки и высшего образования России. Вопросы собеседования формируются в соответствии с программой по математике для поступающих в МГТУ ГА (приложение 1), которая составлена на основании примерной программы вступительных испытаний в высшие учебные заведения Министерства науки и высшего образования России.

Непосредственно перед собеседованием поступающий получает предварительное задание, содержащее один вопрос из раздела II программы по математике и две задачи по математике. Задачи не требуют сложных выкладок для их решения и рассчитаны на проверку понимания; на подготовку к ответу на это задание поступающему дается 30 минут. При последующем собеседовании с членом экзаменационной комиссии поступающий рассказывает о результатах выполнения задания и дает необходимые пояснения. Во второй части собеседования поступающий отвечает на дополнительный вопрос по любому разделу программы, включающий в себя основные понятия, формулировки теорем, законов, запись формул с пояснениями, а также умение их применять при решении конкретных задач. Все вопросы, ответы на них и оценки преподавателя записываются в экзаменационном листе.

На основании ответов на поставленные вопросы члены комиссии принимают решение о результатах собеседования по 100 бальной системе оценок.

Председатель экзаменационной комиссии по Математике, заведующий кафедрой ВМ

Ю.И. Дементьев

ПРОГРАММА ПО МАТЕМАТИКЕ ДЛЯ ПОСТУПАЮЩИХ В МГТУ ГА ПО СОБЕСЕДОВАНИЮ

Настоящая программа состоит из трех разделов.

В первом разделе перечислены основные математические понятия, которыми должен владеть поступающий как на устном, так и на письменном экзамене.

Второй раздел представляет собой перечень вопросов теоретической части устного экзамена. При подготовке к письменному экзамену целесообразно познакомиться с формулировками утверждений из этого раздела.

В третьем разделе указано, какие навыки и умения требуются от поступающего на письменном и устном экзаменах.

Объем знаний и степень владения материалом, описанным в программе, соответствуют курсу математики средней школы. Поступающий может пользоваться всем арсеналом средств этого курса, включая и начала анализа. Однако для решения экзаменационных задач достаточно уверенного владения лишь теми понятиями и их свойствами, которые перечислены в настоящей программе. Объекты и факты, не изучаемые в общеобразовательной школе, также могут использоваться поступающим, но при условии, что он способен их пояснять и доказывать.

В связи с обилием учебников и регулярным их переизданием отдельные утверждения второго раздела могут в некоторых учебниках называться иначе, чем в программе, или формулироваться в виде задач, или вовсе отсутствовать. Такие случаи не освобождают поступающего от необходимости знать эти утверждения.

І. Основные математические понятия и факты

Арифметика, алгебра и начала анализа.

Натуральные числа (N). Простые и составные числа. Делитель, кратное. Наибольший общий делитель, наименьшее общее кратное.

Признаки делимости на 2, 3, 5, 9, 10.

Целые числа (Z). Рациональные числа (Q), их сложение, вычитание, умножение и деление. Сравнение рациональных чисел.

Действительные числа (R), их представление в виде десятичных дробей.

Изображение чисел на прямой. Модуль действительного числа, его геометрический смысл.

Числовые выражения. Выражения с переменными. Формулы сокращенного умножения.

Степень с натуральным и рациональным показателем. Арифметический корень.

Логарифмы, их свойства.

Одночлен и многочлен.

Многочлен с одной переменной. Корень многочлена на примере квадратного трехчлена.

Понятие функции. Способы задания функции. Область определения. Множество значений функции.

График функции. Возрастание и убывание функции; периодичность, четность, нечетность.

Достаточное условие возрастания (убывания) функции на промежутке. Понятие экстремума функции. Необходимое условие экстремума функции (теорема Ферма). Достаточное условие экстремума. Наибольшее и наименьшее значение функции на промежутке.

Определение и основные свойства функций: линейной, квадратичной

 $y=ax^2+bx+c$, степенной $y=x^n$ ($n\in\mathbb{N}$), $y=\kappa/x$, показательной $y=a^x$, a>0, логарифмической $y=\log_a x$, тригонометрических функций ($y=\sin x;\ y=\cos x;\ y=tg\ x$), арифметического корня $y=\sqrt[n]{x}$

Уравнение. Корни уравнения. Понятие о равносильных уравнениях.

Неравенства. Решения неравенства. Понятие о равносильных неравенствах.

Система уравнений и неравенств. Решения системы.

Арифметическая и геометрическая прогрессия. Формула n-го члена и суммы первых n-членов арифметической прогрессии. Формула n-го члена и суммы первых n членов геометрической прогрессии.

Синус и косинус суммы и разности двух аргументов (формулы). Преобразование в произведение сумм sin a \pm sin b; cos a \pm cos b, Определение производной. Ее физический и геометрический смысл. Производные функции y=sin x, y = cos x; y = tg x; y = a^x , $y=x^n$ ($n \in \mathbb{Z}$).

Геометрия

Прямая, луч, отрезок, ломаная, длина отрезка. Угол, величина угла. Вертикальные и смежные углы. Окружность, круг. Параллельные прямые.

Примеры преобразования фигур, виды симметрии. Преобразование подобия и его свойства.

Векторы. Операции над векторами

Многоугольник, его вершины, стороны, диагонали.

Треугольник. Его медиана, биссектриса, высота. Виды треугольников. Соотношения между сторонами и углами прямоугольного треугольника.

Четырехугольник: параллелограмм, прямоугольник, ромб, квадрат, трапеция.

Окружность и круг. Центр, хорда, диаметр, радиус. Касательная к окружности. Дуга окружности. Сектор.

Центральные и вписанные углы

Формулы площади: треугольника, прямоугольника, параллелограмма, ромба, квадрата, трапеции.

Длина окружности и длина дуги окружности. Радианная мера угла. Площадь круга и площадь сектора.

Подобие. Подобные фигуры. Отношение площадей подобных фигур.

Плоскость. Параллельные и пересекающиеся плоскости.

Параллельность прямой и плоскости.

Угол прямой с плоскостью. Перпендикуляр к плоскости.

Двугранные углы. Линейный угол двугранного угла. Перпендикулярность двух плоскостей

Многогранники Их вершины, ребра, грани, диагонали Прямая и наклонная призмы; пирамиды. Правильная призма и правильная пирамида. Параллелепипеды, их виды.

Фигуры вращения: цилиндр, конус, сфера, шар. Центр, диаметр, радиус сферы и шара. Плоскость, касательная к сфере.

Формулы площади поверхности и объема призмы.

Формулы площади поверхности и объема пирамиды.

Формулы площади поверхности и объема цилиндра.

Формулы площади поверхности и объема конуса.

Формулы объема шара.

Формулы площади сферы.

II. Основные формулы и теоремы

Алгебра и начала анализа

- 1. Свойства функций y= kx + b и ее график.
- 2. Свойства функции у=k/х и ее график.
- 3. Свойства функции $y=ax^2+bx+c$ с и ее график.
- 4. Формула корней квадратного уравнения.
- 5. Разложение квадратного трехчлена на линейные множители.
- 6. Свойства числовых неравенств.
- 7. Логарифм произведения, степени, частного.
- 8. Определение и свойства функций $y = \sin x$ и $y = \cos x$ и их графики.
- 9. Определение и свойства функции у = tg х и ее график.
- 10. Решение уравнений вида $\sin x = a$, $\cos x = a$, tg x = a.
- 11. Формулы приведения.
- 12. Зависимости между тригонометрическими функциями одного и того же аргумента.
- 13. Тригонометрические функции двойного аргумента.
- 14. Производная суммы двух функций.

Геометрия

- 1. Свойства равнобедренного треугольника.
- 2. Свойства точек, равноудаленных от концов отрезка.
- 3. Признаки параллельности прямых.
- 4. Сумма углов треугольника. Сумма внешних углов выпуклого многоугольника.
- 5. Признаки параллелограмма.
- 6. Окружность, описанная около треугольника.
- 7. Окружность, вписанная в треугольник.
- 8. Касательная к окружности и ее свойство.
- 9. Измерение угла, вписанного в окружность.
- 10. Признаки подобия треугольника.
- 11. Теорема Пифагора.
- 12. Формулы площадей параллелограмма, треугольника, трапеции.
- 13. Формула расстояния между двумя точками плоскости. Уравнение окружности.
- 14. Признак параллельности прямой и плоскости.
- 15. Признак параллельности плоскостей.
- 16. Теорема о перпендикулярности прямой и плоскости.
- 17. Перпендикулярность двух плоскостей.
- 18. Теоремы о параллельности и перпендикулярности плоскостей.
- 19. Теорема о трех перпендикулярах.

III. Основные умения и навыки

Экзаменующийся должен уметь:

Производить арифметические действия над числами, заданными в виде обыкновенных и десятичных дробей; с требуемой точностью округлять данные числа и результаты вычислений; пользоваться калькуляторами или таблицами для вычислений.

Проводить тождественные преобразования многочленов, дробей, содержащих переменные, выражений, содержащих степенные, показательные, логарифмические и тригонометрические функции.

Строить графики линейной, квадратичной, степенной, показательной, логарифмической и тригонометрических функций.

Решать уравнения и неравенства первой и второй степени, уравнения и неравенства, приводящиеся к ним; решать системы уравнений и неравенств первой и второй степени и приводящиеся к ним. Сюда, в частности, относятся простейшие уравнения и неравенства, содержащие степенные, показательные, логарифмические и тригонометрические функции.

Решать задачи на составление уравнений и систем уравнений.

Изображать геометрические фигуры на чертеже и производить простейшие построения на плоскости.

Использовать геометрические представления при решении алгебраических задач, а методы алгебры и тригонометрии - при решении геометрических задач.

Проводить на плоскости операции над векторами (сложение и вычитание векторов, умножение вектора на число) и пользоваться свойствами этих операций.

Пользоваться понятием производной при исследовании функций на возрастание (убывание), на экстремумы и при построении графиков функций.

КРИТЕРИИ ОЦЕНИВАНИЯ вступительного собеседования по МАТЕМАТИКЕ

Каждый из двух вопросов и каждая из двух задач оцениваются от 0 до 25 баллов в соответствии со следующей таблицей

Критерии оценивания ответа поступающего на вопрос или задачу	Количество баллов
	за ответ
	на вопрос или задачу
Представлен верный ответ на вопрос или задачу,	25
без недочётов. Поступающий объяснил весь	
предъявленный ответ	
Представлен верный ответ на вопрос или задачу,	20
хотя и с недочётами. Поступающий объяснил	
весь предъявленный ответ	
Представлен частично верный ответ на вопрос	15
или задача решена не полностью, но имеется су-	
щественное продвижение. Поступающий объяс-	
нил весь предъявленный ответ	
Представлен неверный ответ на вопрос или зада-	10
ча не решена, но есть заметное продвижение. По-	
ступающий объяснил весь предъявленный ответ	
Представлена идея ответа на вопрос или идея ре-	5
шения задачи. Поступающий объяснил весь	
предъявленный ответ	
Ответ на вопрос неверный или не представлен.	0
Задача не решалась или не решена и нет продви-	
жений. Либо представлен только ответ. Либо по-	
ступающий не может объяснить предъявленный	
ответ	
Максимальный суммарный балл за собеседование	100